加入收藏 | 设为首页 | 会员中心 | 我要投稿 PHP编程网 - 黄冈站长网 (http://www.0713zz.com/)- 数据应用、建站、人体识别、智能机器人、语音技术!
当前位置: 首页 > 站长资讯 > 动态 > 正文

学物理也要用到基础数学

发布时间:2022-02-22 11:59:40 所属栏目:动态 来源:互联网
导读:《张朝阳的物理课》第三十期开播。搜狐创始人、董事局主席兼 CEO 张朝阳坐镇搜狐视频直播间。他先带着网友复习麦克斯韦速度分布律,补充了速度分布化为速率分布的细节,引出关于直角坐标系与球坐标系的讨论,并导出球坐标系的体积元。之后以球壳与质点间的
  《张朝阳的物理课》第三十期开播。搜狐创始人、董事局主席兼 CEO 张朝阳坐镇搜狐视频直播间。他先带着网友复习麦克斯韦速度分布律,补充了速度分布化为速率分布的细节,引出关于直角坐标系与球坐标系的讨论,并导出球坐标系的体积元。之后以球壳与质点间的引力计算为例,结合巧妙的积分参数变换,得到具体公式,最终发现球壳所受引力可以等效到其质心上,即质量集中到球心。将球壳积分变为球体也具有同样的结论。
 
  
  “今天是复习和反刍的一天。”张朝阳说,“上节课谈了玻尔兹曼在速度场和重力场的分布,今天本来想讲点玻尔兹曼分布更普遍的证明,但比它更重要的,是组合与熵的概念。这样就得学点热力学、学点数学,补充点基础知识。”
 
  区别与联系:麦克斯韦速度分布与速率分布
  张朝阳先带着网友复习如何推导麦克斯韦速度分布。“它重点强调理想气体的各向同性,表明速度分布只与速率有关。”他解释说,依据三个垂直方向上速度分布的独立性,可以将总的速度分布函数分解为各个方向上速度分布函数的乘积;之后取对数,将乘积化为求和的形式,再对某一速度分量求偏导;结合一些简单的变换,就可以用分离变量法,解出各方向上的速度分布,进而回过头来,得到完整的三维速度分布。
 
  利用球坐标系与直角坐标系中体积微元之间的关系,可将速度分布化为速率分布。张朝阳指出,“速率分布显示,粒子速率趋于 0 时,概率密度趋于 0。然而,速度分布却显示,粒子在某方向上的速度为 0 时,概率密度取到最大值。”
 
  怎么理解这个看似矛盾的结果呢?张朝阳解释说,速度分布描述的是,速度处在速度区间 Vx~Vx+dVx、Vy~Vy+dVy、Vz~Vz+dVz 的粒子数,它对 x、y、z 三个分量都有要求,只要其中一个速度分量超出此区间,就不计算在分布里面。但是,速率分布描述的是速率处在速率区间 V~V+dV 的粒子数。由速率与速度的定义,可以知道他们并不是一一对应的。一个速率可以对应多个速度。一个速度区间 A 的粒子,对相应的速率区间 dV 有贡献;但速率区间 dV,包含的不只有速度区间 A 的粒子,还包含了其它速度区间 B、C、D 等的粒子。由速率与速度之间的关系,可以看出,当速率越小,其在球坐标系对应的球面越小,直观来讲就是对应的可取速度状态数越少。所以,即使速度分布在各自速度分量趋于 0 时能取到最大值,对速率分布,当速率趋于 0 时,对应的状态数急剧下降,概率密度趋于 0。
 
  如何定量描述速率区间与速度区间状态数的对应关系呢?张朝阳告诉网友,“这就涉及到球坐标系体积微元的推导。”
 
   张朝阳对着示意图边写公式边推导。他说,在球坐标 (r,θ,φ) 所示的某点上,给 θ 做一个微小的变化 dθ,同时也给 φ 做一个微小的变化 dφ,就会在半径为 r 的球面上,划出一个边长分别为 rdθ 与 rsinθdφ 的小面积元,其面积大小为 r^2sinθdθdφ, 若对 r 再做个微小的变化 dr,则会形成一个以前述面积元为底、高度为 dr 的体积微元,其体积大小是 r^2sinθdθdφdr,这就是球坐标区间 θ~θ+dθ、φ~φ+dφ、r~r+dr 所对应的体积。
 
  
  在笛卡尔坐标系里,体积微元是 dxdydz;将积分变量从直角坐标系变换到球坐标系后,就可以将直角坐标的体积微元换成 r^2sinθdθdφdr 再继续积分。当然,类似地,反过来从球坐标到直角坐标也是可以进行变换的。
 
  同理,将 x,y,z 换成速度 Vx,Vy,Vz,速度区间所示的体积微元 dVxdVydVz 对应到球坐标系里的体积微元就是 V^2sinθdθdφdV,其中 V 是速率。所以当速率趋于零时,体积元以 V^2 方式减小到零,这就解释了为什么速率趋于零时对应的速率分布值也趋于零。

(编辑:PHP编程网 - 黄冈站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读