设为首页 - 加入收藏 PHP编程网 - 黄冈站长网 (http://www.0713zz.com)- 中小站长们必上的网站 - 聚焦黄冈站长前沿资讯!
热搜: 游戏 2015 2016 微软
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程

发布时间:2019-10-18 05:02 所属栏目:[经验] 来源:佚名
导读:副标题#e# OpenAI 的机器手学会单手解魔方了,而且还原一个三阶魔方全程只花了 4 分钟,其灵巧程度让人自叹不如。 给你一个魔方,只允许使用一只手,还时不时有人给你捣乱,你能在 4 分钟内还原它吗?我不能,两只手都不行。 OpenAI 的仿人机器手 Dactyl 做

 4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程

OpenAI 的机器手学会单手解魔方了,而且还原一个三阶魔方全程只花了 4 分钟,其灵巧程度让人自叹不如。

给你一个魔方,只允许使用一只手,还时不时有人给你捣乱,你能在 4 分钟内还原它吗?我不能,两只手都不行。

OpenAI 的仿人机器手 Dactyl 做到了。现在它转魔方的视频被疯狂刷屏,网友纷纷表示:人工智能机器人的一个新里程碑诞生了!这是机器人在机体灵活性以及机器学习软件方面的飞跃!

4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程

视频中我们看到,这只机器手虽然动作看起来有点笨拙,让人老是悬着一颗心仿佛魔方时刻都可能掉下来,但每一步动作最终都非常准确。

4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程

视频的后半部分研究人员加大了难度:用布遮挡、使用工具干扰,机器手依然在忘我的玩着魔方。

4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程

对于一个成年人来说,单手操控三阶魔方其实也不是一件容易的事情。而一只机器手能够达成这样的成就,真的让人印象深刻!

4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程

MIT 著名机器人专家和教授 Leslie Kaelbling 表示根本没想到它居然能够完成这项操作!密歇根大学机器操控专家 Dmitry Berenson 对此也给予肯定,并大加赞扬。

OpenAI 训练类人机器手来解魔方的尝试,早在 2017 年 5 月就开始了。之所以对解魔方情有独钟,是因为研究人员认为,如果能成功训练这样一只机器手来完成复杂的操作任务,就能为通用型机器人奠定基础。在 2017 年 7 月,OpenAI 在模拟环境中解决了魔方。但直到 2018 年 7 月,机器手解魔方仍然只能操作一个方块。现在,这个目标终于达成,请观看下面视频,机器手在约 4 分钟的时间里成功还原了一个三阶魔方。

这是机器手解魔方的完整过程,视频未经任何编辑单手解魔方对人类来说都是一项具有挑战性的任务,孩子们需要几年的时间才能掌握所需的灵活性。机器手也仍没完美掌握,成功率只有 60%。

接下来,我们将详细描述 OpenAI 机器手解魔方的方法。

一、单手解魔方:OpenAI 新算法能无限生成仿真环境

OpenAI 使用强化学习和 Kociemba 算法训练神经网络来模拟解决魔方问题。我们专注于一个机器目前难以掌握的问题:感知和灵巧的操作。因此,我们训练神经网络来实现由 Kociemba 算法生成的还原所需的旋转和翻转。

4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程


域随机化使得仅在模拟中训练的网络可以转移到真实的机器人上

任务中面临的最大挑战是在模拟环境中创建足够多样化的环境来捕捉真实世界的物理环境。对于像魔方和机器手这样复杂的物体来说,很难测量和建模摩擦、弹性和动力学等因素,而仅靠domain randomization是不够的。

为了克服这一问题,我们开发了一种新的方法,称为自动域随机化(Automatic Domain Randomization,ADR),该算法能够无休止地在仿真中生成越来越困难的环境。

这样,我们就不必对现实世界做一个精确的建模,而且在模拟中学习到的神经网络可以迁移应用于现实世界。

ADR 从一个单一的、非随机的环境开始,在该环境中,神经网络学习解魔方。随着神经网络性能的提高并达到性能阈值,域随机化的量也随之增加。这使得任务更加困难,因为神经网络现在必须学会将其推广到更随机的环境中。网络不断学习,直到再次超过性能阈值,然后更多随机化,重复这个过程。

4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程
ADR 适应魔方的大小随机化的参数之一是魔方的大小(上图)

ADR 从一个固定大小的魔方开始,随着训练的进行,逐渐增加随机化的范围。我们将同样的技术应用于所有其他参数,如魔方的重量、机器人手指的摩擦力和手的视觉表面材料等。因此,神经网络必须学会在所有这些越来越困难的条件下解魔方。

4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程


自动与手动的域随机化

Domain randomization 要求我们手动指定随机化范围,这很困难,因为太多的随机化会使学习变得困难,但太少的随机化则会阻碍迁移到真正的机器人。ADR 通过自动扩展随时间变化的随机范围来解决这个问题,不需要人工干预。ADR 消除了对领域知识的需求,使我们的方法更容易应用于新任务。与手动域随机化相比,ADR 还使任务始终具有挑战性,训练从不收敛。

在魔方块翻转任务中,我们将 ADR 与手动域随机化进行了比较,这个任务已经有了一个强大的基线。在开始阶段,ADR 在真实机器人上的成功次数较少。但随着 ADR 增大熵值(熵值是环境复杂性的度量),性能最终会比基线性能翻倍,无需人工调整。

稳健性测试

【免责声明】本站内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。

网友评论
推荐文章