60年技术简史,带你读懂AI的前世今生
自然语言和连续的语音与图像不同,它是人类创造的离散抽象的符号系统。传统的特征表示都是离散的稀疏的表示方法,其泛化能力都很差。比如训练数据中出现了很多”北京天气”,但是没有怎么出现”上海天气”,那么它在分类的时候预测的分数会相差很大。但是”北京”和”上海”很可能经常在相似的上下文出现,这种表示方法无法利用这样的信息。 在2003年到时候,Bengio在论文《A Neural Probabilistic Language Model》就提出了神经网络的语言模型,通过Embedding矩阵把一个词编码成一个低维稠密的向量,这样实现相似上下文的共享——比如”北京”和”上海”经常在相似的上下文出现,则它们会被编码成比较相似的向量,这样即使”上海天气”在训练数据中不怎么出现,也能通过”北京天气”给予其较大的概率。 不过2003年的时候大家并不怎么关注神经网络,因此这篇文章当时并没有太多后续的工作。到了2012年之后,深度神经网络在计算机视觉和语音识别等领域取得了重大的进展,把它应用到自然语言处理领域也是非常自然的事情。但是这个时候面临一个问题——没有大量有监督的标注数据。这其实也是前面提到的自然语言处理是很”庞杂”的有关。 (编辑:PHP编程网 - 黄冈站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |