python怎样实现提取html文本?办法是什么?
发布时间:2022-01-11 20:29:48 所属栏目:语言 来源:互联网
导读:这篇文章主要给大家分析python实现提取html文本的方法,小编觉得比较实用,对新手学习python有一定的帮助,因此分享给大家做个参考,感兴趣的朋友可以了解看看,接下来我们一起学习一下吧。 假设我们需要从各种网页中提取全文,并且要剥离所有HTML标记。通
这篇文章主要给大家分析python实现提取html文本的方法,小编觉得比较实用,对新手学习python有一定的帮助,因此分享给大家做个参考,感兴趣的朋友可以了解看看,接下来我们一起学习一下吧。 假设我们需要从各种网页中提取全文,并且要剥离所有HTML标记。通常,默认解决方案是使用BeautifulSoup软件包中的get_text方法,该方法内部使用lxml。这是一个经过充分测试的解决方案,但是在处理成千上万个HTML文档时可能会非常慢。 假设我们需要从各种网页中提取全文,并且要剥离所有HTML标记。通常,默认解决方案是使用BeautifulSoup软件包中的get_text方法,该方法内部使用lxml。这是一个经过充分测试的解决方案,但是在处理成千上万个HTML文档时可能会非常慢。 通过用selectolax替换BeautifulSoup,您几乎可以免费获得5-30倍的加速!这是一个简单的基准测试,可分析commoncrawl(https://commoncrawl.org/)的10,000个HTML页面: # coding: utf-8 from time import time import warc from bs4 import BeautifulSoup from selectolax.parser import HTMLParser def get_text_bs(html): tree = BeautifulSoup(html, 'lxml') body = tree.body if body is None: return None if tree.body is None: return None for tag in tree.css('script'): tag.decompose() for tag in tree.css('style'): tag.decompose() text = tree.body.text(separator='n') return text def read_doc(record, parser=get_text_selectolax): url = record.url text = None if url: payload = record.payload.read() header, html = payload.split(b'rnrn', maxsplit=1) html = html.strip() if len(html) > 0: text = parser(html) return url, text def process_warc(file_name, parser, limit=10000): warc_file = warc.open(file_name, 'rb') t0 = time() n_documents = 0 for i, record in enumerate(warc_file): url, doc = read_doc(record, parser) if not doc or not url: continue n_documents += 1 if i > limit: break warc_file.close() print('Parser: %s' % parser.__name__) print('Parsing took %s seconds and produced %s documentsn' % (time() - t0, n_documents)) >>> ! wget https://commoncrawl.s3.amazonaws.com/crawl-data/CC-MAIN-2018-05/segments/1516084886237.6/warc/ CC-MAIN-20180116070444-20180116090444-00000.warc.gz >>> file_name = "CC-MAIN-20180116070444-20180116090444-00000.warc.gz" >>> process_warc(file_name, get_text_selectolax, 10000) Parser: get_text_selectolax Parsing took 16.170367002487183 seconds and produced 3317 documents >>> process_warc(file_name, get_text_bs, 10000) Parser: get_text_bs Parsing took 432.6902508735657 seconds and produced 3283 documents PyQuery from pyquery import PyQuery as pq text = pq(html).text() selectolax from selectolax.parser import HTMLParser text = HTMLParser(html).text() 正则表达式 import re regex = re.compile(r'<.*?>') text = clean_regex.sub('', html) 结果 我编写了一个脚本来计算时间,该脚本遍历包含HTML片段的10,000个文件。注意!这些片段不是完整的<html>文档(带有<head>和<body>等),只是HTML的一小部分。平均大小为10,314字节(中位数为5138字节)。结果如下: pyquery SUM: 18.61 seconds MEAN: 1.8633 ms MEDIAN: 1.0554 ms selectolax SUM: 3.08 seconds MEAN: 0.3149 ms MEDIAN: 0.1621 ms regex SUM: 1.64 seconds MEAN: 0.1613 ms MEDIAN: 0.0881 ms (编辑:PHP编程网 - 黄冈站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |